Data Science

6 skills with this tag

K-Dense-AI
Passed
Shap
Model interpretability and explainability using SHAP (SHapley Additive exPlanations). Use this skill when explaining machine learning model predictions, computing feature importance, generating SHAP plots (waterfall, beeswarm, bar, scatter, force, heatmap), debugging models, analyzing model bias or fairness, comparing models, or implementing explainable AI. Works with tree-based models (XGBoost, LightGBM, Random Forest), deep learning (TensorFlow, PyTorch), linear models, and any black-box model.
Machine LearningModel InterpretabilityExplainability+3
702.5k
K-Dense-AI
Passed
Seaborn
Statistical visualization. Scatter, box, violin, heatmaps, pair plots, regression, correlation matrices, KDE, faceted plots, for exploratory analysis and publication figures.
Data VisualizationPythonStatistics+3
802.5k
K-Dense-AI
Passed
Scikit Learn
Machine learning in Python with scikit-learn. Use when working with supervised learning (classification, regression), unsupervised learning (clustering, dimensionality reduction), model evaluation, hyperparameter tuning, preprocessing, or building ML pipelines. Provides comprehensive reference documentation for algorithms, preprocessing techniques, pipelines, and best practices.
Machine LearningScikit LearnPython+3
1002.5k
K-Dense-AI
Passed
Histolab
Digital pathology image processing toolkit for whole slide images (WSI). Use this skill when working with histopathology slides, processing H&E or IHC stained tissue images, extracting tiles from gigapixel pathology images, detecting tissue regions, segmenting tissue masks, or preparing datasets for computational pathology deep learning pipelines. Applies to WSI formats (SVS, TIFF, NDPI), tile-based analysis, and histological image preprocessing workflows.
Digital PathologyMedical ImagingImage Processing+3
402.5k
K-Dense-AI
Passed
Gtars
High-performance toolkit for genomic interval analysis in Rust with Python bindings. Use when working with genomic regions, BED files, coverage tracks, overlap detection, tokenization for ML models, or fragment analysis in computational genomics and machine learning applications.
GenomicsBioinformaticsRust+3
602.5k
K-Dense-AI
Passed
Aeon
This skill should be used for time series machine learning tasks including classification, regression, clustering, forecasting, anomaly detection, segmentation, and similarity search. Use when working with temporal data, sequential patterns, or time-indexed observations requiring specialized algorithms beyond standard ML approaches. Particularly suited for univariate and multivariate time series analysis with scikit-learn compatible APIs.
Time SeriesMachine LearningPython+3
302.5k